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THE Lp ALEKSANDROV PROBLEM FOR ORIGIN-SYMMETRIC
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Abstract. The Lp Aleksandrov integral curvature and its corresponding char-

acterization problem—the Lp Aleksandrov problem—were recently introduced
by Huang, Lutwak, Yang, and Zhang. The current work presents a solution to

the Lp Aleksandrov problem for origin-symmetric polytopes when −1 < p < 0.

1. Introduction

The classical Aleksandrov problem is the counterpart of the Minkowski problem—
a fundamental problem in the Brunn-Minkowski theory whose influence reaches
many fields of mathematics including convex geometry, differential geometry, PDE,
and functional analysis. The Aleksandrov problem is the measure characterization
problem for Aleksandrov integral curvature J(K, ·) (also known as integral Gauss
curvature), the most studied curvature measure which was defined by Aleksan-
drov [1]. When the convex body K is sufficiently smooth, the Aleksandrov integral
curvature of K (when viewed as a measure on ∂K) has the Gauss curvature as its
density.

The Aleksandrov problem was completely solved by Aleksandrov himself using
a topological argument, see Aleksandrov [1]. Alternative approaches that connect
the Aleksandrov problem to optimal mass transport were given by Oliker [42] and
more recently by Bertrand [4].

The last three decades saw the rapid and flourish development of the Lp Brunn-
Minkowski theory that was initiated by Firey but only truly gained life when Lut-
wak [34, 35] began to systematically work on it in the early 1990s. The Lp Brunn-
Minkowski theory is arguably the most vibrant theory in modern convex geometry
and has been the breeding ground for many important results. The Lp Minkowski
problem is the fundamental problem in the Lp Brunn-Minkowski theory and char-
acterizes the Lp surface area measure that sits in the center of the theory. In
particular, the discovery of an important class of affine isoperimetric inequalities—
the sharp affine Lp Sobolev inequality—owes to the solution of the Lp Minkowski
problem for p ≥ 1, see [38]. This effort has over the years inspired many more sharp
affine isoperimetric inequalities, see [20,37,38].
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The corresponding measure characterization problem (geometric measure, resp.)
for the Aleksandrov problem (Aleksandrov integral curvature, resp.) in the Lp
Brunn-Minkowski theory had been long sought-for. In a recent groundbreaking
work [24], Huang, Lutwak, Yang & Zhang (Huang-LYZ) discovered that Aleksan-
drov integral curvature naturally arises as the “differential” of a certain entropy in-
tegral. Following their work, they introduced the Lp Aleksandrov integral curvature
in [25] and posed the measure characterization problem called the Lp Aleksandrov
problem. More details will follow shortly.

The purpose of the current work is to solve the Lp Aleksandrov problem when
−1 < p < 0 in the case of origin-symmetric polytopes.

We shall provide some background on the Lp Brunn-Minkowski theory.
The Lp surface area measure Sp(K, ·) is the fundamental geometric measure in

the Lp Brunn-Minkowski theory. In fact, many key concepts in the Lp theory
including the Lp mixed volume and the Lp affine surface area can be defined solely
using the Lp surface area measure.

The Lp Minkowski problem asks: given a Borel measure µ on Sn−1, what are
necessary and sufficient conditions on µ so that there exists a convex body K
such that µ is exactly the Lp surface area measure of K? When p = 1, the Lp
Minkowski problem is the same as the classical Minkowski problem which was
solved by Minkowski, Fenchel & Jessen, Aleksandrov, etc. Regularity results on
the Minkowski problem include the influential paper [17] by Cheng & Yau. The
solution, when p > 1, was given by Lutwak [34] when µ is an even measure and
Chou & Wang [18] for arbitrary µ. See also Chen [16], Chen, Li & Zhu [14], Huang,
Liu & Xu [23], Hug-LYZ [27], Jian, Lu & Wang [28], Lutwak & Oliker [36], LYZ [39],
and Zhu [51].

The Lp Minkowski problem contains two major unsolved cases.
When p = −n, the L−n surface area measure S−n(K, ·) is also known as the

centro-affine surface area measure whose density in the smooth case is the centro-
affine Gauss curvature. The characterization problem, in this case, is the centro-
affine Minkowski problem posed in Chou & Wang [18]. See also Jian, Lu & Zhu [29],
Lu & Wang [31], Zhu [50], etc., on this problem.

When p = 0, the L0 surface area measure S0(K, ·) is the cone volume measure
whose total measure is the volume of K. See, for example, [7, 9, 21, 32, 33, 41,
43, 45, 46, 49]. The characterization problem for the cone volume measure is the
logarithmic Minkowski problem. A complete solution to the existence part of the
logarithmic Minkowski problem, when restricting to even measures and the class of
origin-symmetric convex bodies, was given by Böröczky-LYZ [10]. In the general
case (non-even case), different efforts have been made by Böröczky, Hegedűs &
Zhu [6], Stancu [45], Zhu [49], and most recently by Chen, Li & Zhu [15]. The
logarithmic Minkowski problem has strong connections with isotropic measures
(Böröczky-LYZ [11]) and curvature flows (Andrews [2, 3]).

In a groundbreaking work [24], Huang-LYZ discovered a new family of geometric

measures called dual curvature measures C̃q(K, ·) and the variational formula that
leads to them. The dual Minkowski problem—the problem of prescribing dual
curvature measures—was posed as well. The dual Minkowski problem miraculously
contains problems such as the Aleksandrov problem (q = 0) and the logarithmic
Minkowski problem (q = n) as special cases. The problem quickly became the
center of attention, see, for example, [5, 8, 12,13,19,22,25,26,30,40,47,48].
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The variational formula for Aleksandrov’s integral curvature obtained in [24]
allowed the following discovery, see [25]: for each 0 6= p ∈ R and K ∈ Kno , define
the Lp Aleksandrov integral curvature, Jp(K, ·), of K as the unique Borel measure
on Sn−1 such that

d

dt
E(K+̂pt ·Q)

∣∣∣∣
t=0

=
1

p

∫
Sn−1

ρQ(u)−pdJp(K,u)

holds for every Q ∈ Kn0 , where E(·) is the entropy integral defined by

(1.1) E(Q) = −
∫
Sn−1

log hQ(v)dv,

and K+̂pt ·Q is the harmonic Lp-combination defined by

K+̂pt ·Q = (K∗ +p t ·Q∗)∗ .

Here K∗ is the polar body of K.
The Lp Aleksandrov integral curvature is absolutely continuous with respect to

the classical Aleksandrov integral curvature J(K, ·):

dJp(K, ·) = ρpKdJ(K, ·).

Hence Jp(K, ·) is defined for p = 0 and J0(K, ·) = J(K, ·).
The Lp Aleksandrov problem is the measure characterization problem for the Lp

Aleksandrov integral curvature.

Problem (The Lp Aleksandrov problem). Given a non-zero finite Borel measure
µ on Sn−1 and p ∈ R. What are the necessary and sufficient conditions on µ so
that there exists K ∈ Kno such that µ = Jp(K, ·)?

When the given measure µ has a density f , solving the Lp Aleksandrov problem
is the same as solving the following Monge-Ampère type equation on Sn−1:

h1−p(|∇h|2 + h2)−
n
2 det(∇2h+ hI) = f,

where h is the unknown, ∇h and ∇2h are the gradient and Hessian of h on Sn−1

with respect to the standard metric, and I is the identity matrix.
Huang-LYZ established the existence part of the problem in several situations.

When p > 0, the existence part is completely established.

Theorem 1.1 ( [25]). Suppose p ∈ (0,∞) and µ is a non-zero finite Borel measure
on Sn−1. There exists K ∈ Kno such that µ = Jp(K, ·) if and only if µ is not
concentrated in any closed hemisphere.

The case p < 0 is much more complicated. Under very strong assumptions, the
following existence result was established.

Theorem 1.2 ( [25]). Suppose p ∈ (−∞, 0) and µ is a non-zero even finite Borel
measure on Sn−1. If µ vanishes on all great subspheres of Sn−1, then there exists
K ∈ Kno such that µ = Jp(K, ·).

Note that the conditions in Theorem 1.2 are quite strong. In particular, an
important class of convex bodies—polytopes—are not included in the solution, for
the simple reason that the Lp Aleksandrov integral curvature of a polytope must be
discrete and therefore must obtain positive measure on many great subspheres. In
fact, the classical Minkowski problem and some cases of the Lp Minkowski problem
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were first solved for the polytopal case and then solved for the general case using
approximation.

Theorem 1.2 was shown using variational method. What makes the problem
especially challenging in the case when µ has a positive concentration in one of the
proper subspaces is the behavior of the functional Φ in the maximization problem
(3.1). See also (3.2). When the given measure µ has even the slightest concentration
in a proper subspace u⊥, the functional Φ will still obtain a finite number for any
convex body in u⊥. This feature of Φ made it extremely challenging to show that
the final solution K does not collapse into a lower dimensional subspace.

The aim of the current work is to show that the Lp Aleksandrov problem has a
solution when −1 < p < 0 and the given measure µ is an even discrete measure.

Theorem 1.3. Suppose p ∈ (−1, 0) and µ is a non-zero, even, discrete, finite, Borel
measure on Sn−1. There exists an origin-symmetric polytope K ∈ Kne such that
µ = Jp(K, ·) if and only if µ is not concentrated entirely on any great subspheres.

Note that although still variational in nature, the approach here is vastly different
from that in [25]. It should also be pointed out that there might be a way to use
the solution obtained in the current work to obtain a solution to the even Lp
Aleksandrov problem for −1 < p < 0 via approximation.

2. Preliminaries

This section is divided into two subsections. In the first subsection, basics in the
theory of convex bodies will be covered. In the second subsection, the notion of Lp
Aleksandrov integral curvature and Lp Aleksandrov problem will be introduced.

2.1. Basics in the theory of convex bodies. The book [44] by Schneider offers
a comprehensive overview of the theory of convex bodies.

Let Rn be the n-dimensional Euclidean space. The unit sphere in Rn is denoted
by Sn−1 and the volume of the unit ball will be written as ωn. A convex body in
Rn is a compact convex set with nonempty interior. The boundary of K is written
as ∂K. Denote by Kn0 the class of convex bodies that contain the origin in their
interiors in Rn and by Kne the class of origin-symmetric convex bodies in Rn.

Let K be a compact convex subset of Rn. The support function hK of K is
defined by

hK(y) = max{x · y : x ∈ K}, y ∈ Rn.
The support function hK is a continuous function homogeneous of degree 1. Sup-
pose K contains the origin in its interior. The radial function ρK is defined by

ρK(x) = max{λ : λx ∈ K}, x ∈ Rn \ {0}.

The radial function ρK is a continuous function homogeneous of degree −1. It is
not hard to see that ρK(u)u ∈ ∂K for all u ∈ Sn−1.

For a convex body K ∈ Kn0 , the polar body of K is given by

K∗ = {y ∈ Rn : y · x ≤ 1, for all x ∈ K}.

It is simple to check that K∗ ∈ Kn0 and that

hK∗(x) = 1/ρK(x) and ρK∗(x) = 1/hK(x),

for x ∈ Rn \ {o}. Moreover, we have (K∗)∗ = K.
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For each f ∈ C+(Sn−1), the Wulff shape [f ] generated by f is the convex body
defined by

[f ] = {x ∈ Rn : x · v ≤ f(v), for all v ∈ Sn−1}.
It is apparent that h[f ] ≤ f and [hK ] = K for each K ∈ Kn0 .

The Lp combination of two convex bodies K,L ∈ Kn0 was first studied by Firey
and was the starting point of the now rich Lp Brunn-Minkowski theory developed
by Lutwak [34, 35]. For t, s > 0, the Lp combination of K and L, denoted by
t ·K +p s ·L, is defined to be the Wulff shape generated by the function ht,s where

ht,s =

{
(thpK + shpL)

1
p , if p 6= 0,

htKh
s
L, if p = 0.

When p ≥ 1, by the convexity of `p norm, we get that

hpK+pt·L = hpK + thpL.

Define the Lp harmonic combination t ·K+̂ps · L by

t ·K+̂ps · L = (t ·K∗+p s · L∗)∗ .

Suppose Ki is a sequence of convex bodies in Rn. We say Ki converges to a
compact convex subset K ⊂ Rn if

(2.1) max{|hKi(v)− hK(v)| : v ∈ Sn−1} → 0,

as i→∞. If K contains the origin in its interior, equation (2.1) implies

max{|ρKi(u)− ρK(u)| : u ∈ Sn−1} → 0,

as i→∞.
For a compact convex subset K in Rn and v ∈ Sn−1, the supporting hyperplane

H(K, v) of K at v is given by

H(K, v) = {x ∈ K : x · v = hK(v)}.

By its definition, the supporting hyperplane H(K, v) is non-empty and contains
only boundary points of K. For x ∈ H(K, v), we say v is an outer unit normal of
K at x ∈ ∂K.

Let ω ⊂ Sn−1 be a Borel set. The radial Gauss image of K at ω, denoted by
αK(ω), is defined to be the set of all outer unit normals v of K at some boundary
point uρK(u) where u ∈ ω, i.e.,

αK(ω) = {v ∈ Sn−1 : v · uρK(u) = hK(v) for some u ∈ ω}.

When ω = {u} is a singleton, we usually write αK(u) instead of the more cumber-
some notation αK({u}). Let ωK be the subset of Sn−1 such that αK(u) contains
more than one element for each u ∈ ωK . By Theorem 2.2.5 in [44], the set ωK
has spherical Lebesgue measure 0. The radial Gauss map of K, denoted by αK , is
the map defined on Sn−1 \ ωK that takes each point u in its domain to the unique
vector in αK(u). Hence αK is defined almost everywhere on Sn−1 with respect to
the spherical Lebesgue measure.

Let η ⊂ Sn−1 be a Borel set. The reverse radial Gauss image of K, denoted by
α∗K(η), is defined to be the set of all radial directions such that the corresponding
boundary points have at least one outer unit normal in η, i.e.,

α∗K(η) = {u ∈ Sn−1 : v · uρK(u) = hK(v) for some v ∈ η}.
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When η = {v} is a singleton, we usually write α∗K(v) instead of the more cumber-
some notation α∗K({v}). Let ηK be the subset of Sn−1 such that α∗K(v) contains
more than one element for each v ∈ ηK . By Theorem 2.2.11 in [44], the set ηK has
spherical Lebesgue measure 0. The reverse radial Gauss map of K, denoted by α∗K ,
is the map defined on Sn−1 \ηK that takes each point v in its domain to the unique
vector in α∗K(v). Hence α∗K is defined almost everywhere on Sn−1 with respect to
the spherical Lebesgue measure.

2.2. Lp Aleksandrov integral curvature and the Lp Aleksandrov problem.
For K ∈ Kn0 , the Aleksandrov integral curvature of K, denoted by J(K, ·), is a
Borel measure on Sn−1 given by

(2.2) J(K,ω) = Hn−1(αK(ω)).

It is apparent that J(K,Sn−1) = nωn. The classical Aleksandrov problem is the
measure characterization problem for Aleksandrov integral curvature: given a Borel
measure µ on Sn−1 with |µ| = nωn, under what conditions on µ is there a convex
body K ∈ Kn0 such that µ = J(K, ·)?

The Aleksandrov problem was completely solved by Aleksandrov himself [1] using
his mapping lemma. In particular, there exists a K ∈ Kn0 with µ = J(K, ·) if and
only if the given measure µ satisfies the following Aleksandrov condition:

µ(ω) < Hn−1(Sn−1 \ ω∗),

for each non-empty spherically convex ω ⊂ Sn−1. Here ω∗ is given by

ω∗ = {v ∈ Sn−1 : v · u ≤ 0,∀u ∈ ω}.

Moreover, the convex body K, if it exists, is unique up to a dilation.
Aleksandrov integral curvature arises naturally by “differentiating” the entropy

integral E given in (1.1), see [25]. In particular,

(2.3)
d

dt
E(K+̂o t ·Q)

∣∣∣∣
t=0

= −
∫
Sn−1

log ρQ(u)dJ(K,u)

holds for each Q ∈ Kn0 . Note that, instead of defining Aleksandrov integral curva-
ture as in (2.2), one may define J(K, ·) as the unique Borel measure on Sn−1 such
that (2.3) holds for each Q ∈ Kn0 . This motivates the discovery of the Lp Aleksan-
drov integral curvature [25]. For K ∈ Kn0 and p 6= 0, the Lp Aleksandrov integral
curvature of K, Jp(K, ·), is defined to be the unique Borel measure on Sn−1 such
that

d

dt
E(K+̂p t ·Q)

∣∣∣∣
t=0

=
1

p

∫
Sn−1

ρQ(u)−pdJp(K,u)

holds for each Q ∈ Kn0 .
The Lp Aleksandrov integral curvature has the following integral representation:

dJp(K, ·) = ρpKdJ(K, ·).

Hence, we may define J0(K, ·) as the classical Aleksandrov integral curvature J(K, ·).
When the body K is sufficiently smooth, the Lp Aleksandrov integral curvature

J(K, ·) is absolute continuous with respect to the spherical Lebesgue measure and
its Radon-Nikodym derivative is given by

(2.4) h1−p(|∇h|2 + h2)−
n
2 det(∇2h+ hI),
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where ∇h and ∇2h are the gradient and Hessian of h on Sn−1 with respect to an
orthonormal basis.

Huang-LYZ [25] posed the following Lp Aleksandrov problem.

Problem (The Lp Aleksandrov problem). Given a non-zero finite Borel measure
µ on Sn−1 and p ∈ R. What are the necessary and sufficient conditions on µ so
that there exists K ∈ Kno such that µ = Jp(K, ·)?

By (2.4), the Lp Aleksandrov problem reduces to the following PDE when the
given measure µ has a density f :

h1−p(|∇h|2 + h2)−
n
2 det(∇2h+ hI) = f.

When p = 0, the L0 Aleksandrov problem is nothing but the classical Aleksan-
drov problem. When p > 0, the existence part of the Lp Aleksandrov problem was
completely settled in Huang-LYZ [25], see Theorem 1.1. However, when p < 0, a
relatively strong condition was required in Huang-LYZ [25] to show the existence,
see Theorem 1.2. This condition excludes a very important subclass of convex
bodies—polytopes. It is the aim of the current work to fill that gap in the case
when −1 < p < 0 and the polytope is origin-symmetric.

The proof adopted here is variational in nature. In Section 3, we shall convert
the Lp Aleksandrov problem, when the given measure is discrete and even, to an
optimization problem. In Section 4, the proposed optimization problem will be
solved. The proof to the main theorem, Theorem 1.3, is given at the end of Section
4.

3. Optimization problem

The following lemma was given in Huang-LYZ [25], which connects the Lp Alek-
sandrov problem to an optimization problem.

Lemma 3.1 (Lemma 5.3, [25]). Suppose p 6= 0. Let µ be a finite even, Borel
measure on Sn−1 and K ∈ Kne be a body such that

Ψ(K) = sup{Ψ(Q) : Q ∈ Kne },

where Ψ(Q) = 1
nωn
E(Q) − 1

p log
∫
Sn−1 ρ

−p
Q dµ. Then, there exists c > 0 such that

µ = Jp(cK, ·).

We shall now adapt the above lemma to the discrete setting.
Suppose µ is an even discrete measure whose support is {±u1,±u2, . . . ,±uN}.

Let Dµ ⊂ Kno be the set of all origin-symmetric convex polytopes whose vertices
are in the directions belonging to the set {±u1,±u2, . . . ,±uN}. It is obvious that
if K ∈ Dµ, then there exists ρ1, . . . , ρN > 0 such that

Dµ = conv{±ρ1u1,±ρ2u2, . . . ,±ρNuN}.

The following lemma converts the even discrete Lp Aleksandrov problem into a
maximization problem.

Lemma 3.2. Suppose µ is an even discrete measure and p 6= 0. If there exists an
origin-symmetric K ∈ Kne such that

(3.1) Φ(K) = sup
Q∈Dµ

Φ(Q),
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where Φ : Kne → R is given by

(3.2) Φ(Q) =
1

nωn
E(Q)− 1

p
log

∑
ui∈suppµ

ρQ(ui)
−pµ({ui}),

then there exists c > 0 such that

µ = Jp(cK, ·).

Proof. It is obvious that

(3.3) sup
Q∈Dµ

Φ(Q) ≤ sup
Q∈Kne

Φ(Q).

On the other side, for each Q ∈ Kne , let

Q̃ = conv{ρQ(ui)ui : ui ∈ suppµ}.
Then, ρQ̃(ui) ≥ ρQ(ui) for each ui ∈ suppµ and hQ̃(v) ≤ hQ(v) for each v ∈ Sn−1.

This implies that

Φ(Q) ≤ Φ(Q̃).

This, in combination with (3.3), shows that

Φ(K) = sup
Q∈Dµ

Φ(Q) = sup
Q∈Kne

Φ(Q).

Note that when the given measure µ is discrete, Ψ(·) = Φ(·). According to
Lemma 3.1, there exists c > 0 such that µ = Jp(cK, ·). �

4. Solving the optimization problem

Lemma 4.1. Suppose µ is an even discrete measure on Sn−1 whose support is not
contained in any great subspheres. Let Qj ∈ Dµ be such that maxu∈Sn−1 ρQj (u) =

1. Assume there exists an origin-symmetric compact convex set Q0 such that Qj

converges to Q0 in Hausdorff metric. Then, by possibly taking a subsequence,

lim
j→∞

Φ(Qj) = Φ(Q0).

Proof. SinceQj ∈ Dµ, by possibly taking a subsequence, we may assume ρQj (ui0) =

1 for some ui0 ∈ suppµ. By the definition of support function and the fact that Qj

is origin-symmetric,

|ui0 · v| ≤ hQj (v) ≤ 1, v ∈ Sn−1.

Hence,

| log hQj (v)| ≤ − log |ui0 · v|, v ∈ Sn−1.

Notice that log |ui0 · v| is an integrable function on Sn−1. Since Qj converges to
Q0 in Hausdorff metric, hQj converges to hQ0 pointwise. This, combined with the
fact that hQ0 > 0 almost everywhere (since Q0 has diameter bigger than 1), implies
that log hQj converges to log hQ0 almost everywhere. By dominated convergence
theorem,

(4.1) lim
j→∞

E(Qj) = E(Q0).

On the other side, since Qj converges to Q0 in Hausdorff metric, we have

lim
j→∞

ρQj (ui) = ρQ0(ui), ∀ui ∈ suppµ.
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Hence,

lim
j→∞

∑
ui∈suppµ

ρQj (ui)
−pµ({ui}) =

∑
ui∈suppµ

ρQ0(ui)
−pµ({ui}).

Since ρQj (ui0) = 1, we have
∑
ui∈suppµ ρQj (ui)

−pµ({ui}) > 0. Hence,

(4.2) lim
j→∞

log
∑

ui∈suppµ

ρQj (ui)
−pµ({ui}) = log

∑
ui∈suppµ

ρQ0(ui)
−pµ({ui}).

Equations (4.1) and (4.2) imply that

lim
j→∞

Φ(Qj) = Φ(Q0).

�

Let S be a k-dimensional subspace of Rn. Write v ∈ Sn−1 as

(4.3) v = (v2 cosφ, v1 sinφ),

where v2 ∈ Sk−1 ⊂ S, v1 ∈ Sn−k−1 ⊂ S⊥ and 0 ≤ φ ≤ π/2.

Lemma 4.2. Suppose u1, . . . , uN are N unit vectors such that they are not con-
centrated on any great subspheres. Let f : Sn−1 → R be defined as

f(v) = max
s+1≤i≤N

|v · ui|,

where 1 ≤ s ≤ N − 1 is such that S = span{u1, . . . , us} is a proper subspace of Rn.
Then, there exists constants 0 < c < 1 and 0 < δ0 < π/2 such that

f(v) ≥ c,

for each v = (v2 cosφ, v1 sinφ) ∈ Sn−1 with φ > π/2 − δ0. Here φ comes from the
general polar coordinate expression (4.3).

Proof. Note that f is uniformly continuous on Sn−1. Since u1, . . . , uN are not
concentrated on any great subspheres,

f(v) > 0, v ∈ S⊥.

By continuity of f , there exists 0 < c1 < 1 such that

(4.4) f(v) > c1, v ∈ S⊥.

Moreover, since f is uniformly continuous, there exists sufficiently small 0 < δ1 < 1
such that ||v1 − v2|| < δ1 implies |f(v1) − f(v2)| < c1

2 . This, when combined with
(4.4), shows that there exists 0 < c < 1 such that

f(v) ≥ c, for v ∈ Sn−1 with dist(v, S⊥) < δ1.

The desired result now follows from the fact that we can find a sufficiently small
0 < δ0 < 1 such that if v ∈ Sn−1 is such that φ > π

2 −δ0, then dist(v, S⊥) < δ1. �

The following lemma partitions Sn−1 according to the support of a given measure
µ.

Lemma 4.3. Suppose u1, . . . , uN are N unit vectors such that they are not concen-
trated on any great subsphere. Let 1 ≤ s ≤ N−1 be such that S = span{u1, . . . , us}
is a proper subspace of Rn. Let R ≥ 1. For 1 ≤ ρ1, . . . , ρs ≤ R and sufficiently
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small 0 < t < 1 such that arccos ctR > π
2 − δ0 where c and δ0 come from Lemma 4.2,

let

Kt = conv{±ρ1u1, . . . ,±ρsus,±tus+1, . . . ,±tuN}.

Denote

Ω1 =

{
v ∈ Sn−1 : arccos

ct

R
< φ <

π

2

}
Ω2 =

{
v ∈ Sn−1 : 0 ≤ φ < arccos

t

r0

}
Ω3 =

{
v ∈ Sn−1 : arccos

t

r0
≤ φ ≤ arccos

ct

R

}
,

where 0 < r0 < 1 is such that r0 ≤ max1≤i≤s |v · ui| for all unit vectors v ∈ S.
Then, for v ∈ Ω1,

hKt(v) ≤ t, and hK0(v) ≥ r0 cosφ;

for v ∈ Ω2,

hKt(v) = hK0(v);

for v ∈ Ω3,

hKt(v) ≤ R, and hK0(v) ≥ r0 cosφ.

Proof. The existence of 0 < r0 < 1 such that r0 ≤ max1≤i≤s |v · ui| for all unit
vectors v ∈ S follows from the fact that u1, · · · , us spans S and that max1≤i≤s |v ·ui|
is a continuous function.

Throughout the proof, we will use the general polar coordinates (4.3).
Assume v ∈ Ω1. For i = 1, . . . , s,

ρi|ui · v| = ρi cosφ|ui · v2| ≤ R cosφ ≤ R · ct
R
≤ t.

Since

hKt(v) = max

{
max
i=1,...,s

ρi|ui · v|, max
i=s+1,...,N

t|ui · v|
}
,

we have hKt(v) ≤ t. On the other side, since ρi ≥ 1, we have,

hK0(v) ≥ max
1≤i≤s

ρi cosφ|v2 · ui| ≥ r0 cosφ.

Assume now, v ∈ Ω2. By the definition of support function,

hKt(v) ≥ max
1≤i≤s

ρi cosφ|v2 · ui| ≥ r0 cosφ > t.

Since t|v · u| ≤ t for any u ∈ Sn−1, we have

hKt(v) = max

{
max
i=1,...,s

ρi|ui · v|, max
i=s+1,...,N

t|ui · v|
}

= max
i=1,...,s

ρi|ui · v| = hK0(v).

Finally, let us assume v ∈ Ω3. By the fact that ρKt ≤ R, it is apparent that
hKt(v) ≤ R. The fact that hK0(v) ≥ r0 cosφ follows from the same argument as in
the case v ∈ Ω1. �

The following lemma solves the optimization problem (3.1).
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Lemma 4.4. Let −1 < p < 0 and µ be an even discrete measure on Sn−1 whose
support is not contained in any great subspheres. Then, there exists K ∈ Kne such
that

Φ(K) = sup
Q∈Dµ

Φ(Q),

where Φ is as defined in (3.2).

Proof. Suppose suppµ = {±u1,±u2, . . . ,±uN} and

µ =

N∑
i=1

µi (δui + δ−ui) .

Suppose Qj ⊂ Dµ is a maximization sequence. Let

ρji = ρQj (u
i).

Since Φ is homogeneous of degree 0, we may rescale Qj and assume maxi ρ
j
i =

1. By Blaschke’s selection theorem, after possibly taking a subsequence, we may
assume that there exists an origin-symmetric compact convex set Q0 such that Qj

converges to Q0 in Hausdorff metric. Moreover,

ρ0
i := ρQ0(ui) = lim

j→∞
ρji .

By Lemma 4.1, after possibly taking another subsequence, we may assume

(4.5) Φ(Q0) = lim
j→∞

Φ(Qj) = sup
Q∈Dµ

Φ(Q).

It remains to show that o ∈ intQ0.
We argue by contradiction and assume that there exists a proper subspace S

of Rn such that Q0 ⊂ S and spanQ0 = S. Let k = dimS. Since S is a proper
subspace, we have 1 ≤ k < n. By relabelling, we may assume there exists 1 ≤ s < N
such that

±u1, . . . ,±us ∈ S,

and

±us+1, . . . ,±uN /∈ S.

Utilizing the fact that Φ is homogeneous of degree 0 again and that spanQ0 = S,
we may rescale Q0 so that there exists R ≥ 1 such that

1 ≤ ρ0
1, . . . , ρ

0
s ≤ R,

and

ρ0
s+1, . . . , ρ

0
N = 0.

For sufficiently small 0 < t < 1 such that arccos ctR > π
2 −δ0 where c and δ0 come

from Lemma 4.2, let

Kt = conv{±ρ1u1, . . . ,±ρsus,±tus+1, . . . ,±tuN}.

Note that Kt ∈ Dµ. We are going to reach the desired contradiction by showing
that for some t, Φ(Kt) > Φ(Q0).
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Towards this end, for each K ∈ Kne , write

Np(K) = −1

p
log

∑
ui∈suppµ

ρK(ui)
−pµi = −1

p
log

(
2

N∑
i=1

ρK(ui)
−pµi

)
.

Let ∆1(t) = 1
nωn
E(Kt)− 1

nωn
E(Q0) and ∆2(t) = Np(Kt)−Np(Q0). Note that

(4.6) Φ(Kt)− Φ(Q0) = ∆1(t) + ∆2(t).

By Lemma 4.3 and noticing that Ω1,Ω2,Ω3 is a partition of Sn−1,
(4.7)

nωn∆1(t) ≥
[
−
∫

Ω1

log tdv +

∫
Ω1

log(r0 cosφ)dv

]
+

[
−
∫

Ω3

logRdv +

∫
Ω3

log(r0 cosφ)dv

]
= −kωk(n− k)ωn−k log t

∫ π
2

arccos ctR

cosk−1 φ sinn−k−1 φdφ

− kωk(n− k)ωn−k logR

∫ arccos ctR

arccos t
r0

cosk−1 φ sinn−k−1 φdφ

+ kωk(n− k)ωn−k

∫ π/2

arccos t
r0

log(r0 cosφ) cosk−1 φ sinn−k−1 φdφ

≥ −kωk(n− k)ωn−k log t

∫ π
2

arccos ctR

cosk−1 φ sinn−k−1 φdφ

− kωk(n− k)ωn−k logR

(
arccos

ct

R
− arccos

t

r0

)
+ kωk(n− k)ωn−k

∫ π/2

arccos t
r0

log(r0 cosφ) cosk−1 φ sinn−k−1 φdφ

=: kωk(n− k)ωn−kg1(t).

Here, the constant r0 comes from Lemma 4.3.
By the definition of Kt and ∆2(t),

(4.8)

∆2(t) ≥ −1

p
log

(
2

s∑
i=1

(
ρ0
i

)−p
µi + 2

N∑
i=s+1

t−pµi

)
+

1

p
log

(
2

s∑
i=1

(
ρ0
i

)−p
µi

)

= −1

p
log

∑s
i=1

(
ρ0
i

)−p
µi +

∑N
i=s+1 µit

−p∑s
i=1 (ρ0

i )
−p
µi

= −1

p
log

a+ bt−p

a

=: g2(t),

where a =
∑s
i=1

(
ρ0
i

)−p
µi > 0 and b =

∑N
i=s+1 µi > 0.
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Note that limt→0+ g1(t) = 0. Indeed, for sufficiently small t,
(4.9)

|g1(t)| ≤ | log t|(π
2
− arccos

ct

R
) + logR(arccos

ct

R
− arccos

t

r0
) +

∫ π
2

arccos t
r0

| log(r0 cosφ)|dφ

≤ | log t| arcsin
ct

R
+ logR(arcsin

ct

R
− arcsin

t

r0
) +

∫ t

0

1√
r2
0 − x2

| log x|dx

≤ | log t| arcsin
ct

R
+ logR(arcsin

ct

R
− arcsin

t

r0
) +

2

r0

∫ t

0

| log x|dx

−→ 0,

as t→ 0. Also, it is straightforward to see that limt→0+ g2(t) = 0.

Let G(t) = kωk(n−k)ωn−k
nωn

g1(t) + g2(t). From (4.7), (4.8), and (4.9), we see that

(4.10) ∆1(t) + ∆2(t) ≥ G(t),

and

(4.11) lim
t→0+

G(t) = 0.

By direct computation, for sufficiently small t > 0,

g′1(t) =− 1

t

∫ π
2

arccos ctR

cosk−1 φ sinn−k−1 φdφ

− log t cosk−1

(
arccos

ct

R

)
sinn−k−1

(
arccos

ct

R

)
1√

1−
(
ct
R

)2 cR
− logR

− 1√
1−

(
ct
R

)2 cR +
1√

r2
0 − t2


+ log

(
r0 cos(arccos

t

r0
)

)
cosk−1(arccos

t

r0
) sinn−k−1(arccos

t

r0
)

1√
r2
0 − t2

≥ −
arcsin ct

R

t
− logR

− 1√
1−

(
ct
R

)2 cR +
1√

r2
0 − t2


+ log t

− cosk−1

(
arccos

ct

R

)
sinn−k−1

(
arccos

ct

R

)
1√

1−
(
ct
R

)2 cR
+ cosk−1(arccos

t

r0
) sinn−k−1(arccos

t

r0
)

1√
r2
0 − t2

]
=: C(t) + log t ·D(t),

where C(t) and D(t) are bounded terms when t > 0 is sufficiently small.
On the other side, for t > 0 sufficiently small,

g′2(t) =
b

a+ t−pb
t−p−1 ≥ b

2a
t−p−1.
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Hence,

(4.12) G′(t) ≥ kωk(n− k)ωn−k
nωn

C(t) +
kωk(n− k)ωn−k

nωn
D(t) log t+

b

2a
t−p−1.

Since −1 < p < 0, when t > 0 is sufficiently small, the right side of (4.12) is
positive. Hence, there exists δ1 > 0 such that G′(t) > 0 for each t ∈ (0, δ1). This,
combined with (4.11), implies that there exists t0 > 0 such that G(t0) > 0. By
(4.10), this implies that ∆1(t0) + ∆2(t0) > 0. By (4.6), Φ(Kt0) > Φ(Q0). But, this
is a contradiction to (4.5). �

Lemmas 3.2 and 4.4 immediate imply:

Theorem 4.5. Suppose p ∈ (−1, 0) and µ is a non-zero, even, discrete, finite, Borel
measure on Sn−1. There exists an origin-symmetric polytope K ∈ Kne such that
µ = Jp(K, ·) if and only if µ is not concentrated entirely on any great subspheres.

Proof. The “only if” part is obvious while the “if” part follows from Lemmas 3.2
and 4.4. �
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Poincaré Probab. Statist. 39 (2003), 241–261.
[42] V. Oliker, Embedding Sn into Rn+1 with given integral Gauss curvature and optimal mass

transport on Sn, Adv. Math. 213 (2007), 600–620.

[43] G. Paouris and E. Werner, Relative entropy of cone measures and Lp centroid bodies, Proc.
Lond. Math. Soc. (3) 104 (2012), 253–286.

[44] R. Schneider, Convex bodies: the Brunn-Minkowski theory, expanded ed., Encyclopedia of
Mathematics and its Applications, vol. 151, Cambridge University Press, Cambridge, 2014.

[45] A. Stancu, The discrete planar L0-Minkowski problem, Adv. Math. 167 (2002), 160–174.

[46] G. Xiong, Extremum problems for the cone volume functional of convex polytopes, Adv.

Math. 225 (2010), 3214–3228.
[47] Y. Zhao, The dual Minkowski problem for negative indices, Calc. Var. Partial Differential

Equations 56 (2017), no. 2, Art. 18, 16.
[48] , Existence of solutions to the even dual Minkowski problem, J. Differential Geom.

110 (2018), no. 3, 543–572.

[49] G. Zhu, The logarithmic Minkowski problem for polytopes, Adv. Math. 262 (2014), 909–931.
[50] , The centro-affine Minkowski problem for polytopes, J. Differential Geom. 101 (2015),

159–174.



16 Y. ZHAO

[51] , The Lp Minkowski problem for polytopes for p < 0, Indiana Univ. Math. J. 66

(2017), no. 4, 1333–1350.


