Quick Review

- Trajectory question—use $\mathbf{a}(t)$ or $\mathbf{v}(t)$, and the initial state to figure out position vector $\mathbf{r}(t)$.
- Functions of several variables z = f(x, y).
 - level curves—for any choice of z, c = z = f(x, y) gives a curve in the (x, y) plane;
 - Graph—a surface in 3D.
- Partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$
 - How to compute them—for example, when calculating $\frac{\partial f}{\partial x}$, treat y as a constant.
 - Geometric meaning. For example, $\frac{\partial f}{\partial x}(a, b)$: the graph z = f(x, y) intersects y = b at a curve \rightsquigarrow slope of the tangent line to that curve at x = a.

Practice problems:

1. Consider z = 1 - x - y. Draw its level curves and graph.

2. Consider $z = 2\sqrt{x^2 + y^2}$. Draw its level curves and graph.

3. Draw the graph of $z = f(x, y) = y^2$. (Notice that although x is missing, this is still treated as a function of two variables and thus its graph is in 3D. Think about what the missing variable mean. You actually saw this kind of stuff in single variable calculus. y = f(x) = 1 has no x in it.)

4. Consider $f(x, y) = 2\sqrt{x^2 + y^2}$. Find $f_x(1, 1)$. What does this number mean, geometrically?

5. (if we have time) Show Newton's first law of motion: a moving particle that no force acts on shall move at a constant speed along a straight line.