18.02A Recitation - Monday, Nov. 5, 2018

Quick Review

- Trajectory question-use $\mathbf{a}(t)$ or $\mathbf{v}(t)$, and the initial state to figure out position vector $\mathbf{r}(t)$.
- Functions of several variables $z=f(x, y)$.
- level curves - for any choice of $z, c=z=f(x, y)$ gives a curve in the (x, y) plane; - Graph-a surface in 3D.
- Partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$
- How to compute them-for example, when calculating $\frac{\partial f}{\partial x}$, treat y as a constant.
- Geometric meaning. For example, $\frac{\partial f}{\partial x}(a, b)$: the graph $z=f(x, y)$ intersects $y=b$ at a curve \rightsquigarrow slope of the tangent line to that curve at $x=a$.

Practice problems:

1. Consider $z=1-x-y$. Draw its level curves and graph.
2. Consider $z=2 \sqrt{x^{2}+y^{2}}$. Draw its level curves and graph.
3. Draw the graph of $z=f(x, y)=y^{2}$. (Notice that although x is missing, this is still treated as a function of two variables and thus its graph is in 3D. Think about what the missing variable mean. You actually saw this kind of stuff in single variable calculus. $y=f(x)=1$ has no x in it.)
4. Consider $f(x, y)=2 \sqrt{x^{2}+y^{2}}$. Find $f_{x}(1,1)$. What does this number mean, geometrically?
5. (if we have time) Show Newton's first law of motion: a moving particle that no force acts on shall move at a constant speed along a straight line.
