Quick Review

• Project a vector \mathbf{v} onto another vector \mathbf{w}

$$\left(\mathbf{v}\cdot\frac{\mathbf{w}}{||\mathbf{w}||}\right)\frac{\mathbf{w}}{||\mathbf{w}||}$$

- Determinant of a 3-by-3 matrix
- Cross product $\mathbf{v} \times \mathbf{w}$ (works in 3D, the product is another 3D-vector)
 - 1. Geometrically: $||\mathbf{v} \times \mathbf{w}||$ is the area of the parallelogram spanned by \mathbf{v} and \mathbf{w} ; $\mathbf{v} \times \mathbf{w}$ is orthogonal to both \mathbf{v} and \mathbf{w} and the direction is determined by *right-hand rule*.
 - 2. Algebraically,

$$\langle x_1, y_1, z_1
angle imes \langle x_2, y_2, z_2
angle = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix}$$

Practice problems:

1. Project the vector $\langle 1, 2, 3 \rangle$ onto $\langle 1, 0, 1 \rangle$.

2. Compute the following determinant

1	2	3	
4	5	6	
7	8	9	

3. Compute the cross product

$$\langle 2, -1, 3 \rangle \times \langle -4, 3, -5 \rangle.$$

Solution.

$$\langle 2, -1, 3 \rangle \times \langle -4, 3, -5 \rangle = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -1 & 3 \\ -4 & 3 & -5 \end{vmatrix}$$

= $\begin{vmatrix} -1 & 3 \\ 3 & -5 \end{vmatrix} \mathbf{i} - \begin{vmatrix} 2 & 3 \\ -4 & -5 \end{vmatrix} \mathbf{j} + \begin{vmatrix} 2 & -1 \\ -4 & 3 \end{vmatrix} \mathbf{k}$
= $-4\mathbf{i} - 2\mathbf{j} + 2\mathbf{k}.$

4. (Optional) Let $\mathbf{v} = \langle 2, -1, 3 \rangle$ and $\mathbf{w} = \langle -4, 3, -5 \rangle$. The two lines generated by \mathbf{v} and \mathbf{w} will determine a plane P.

Suppose $\mathbf{A} = \langle 1, 2, 3 \rangle$. Find two vectors \mathbf{B} and \mathbf{C} such that $\mathbf{A} = \mathbf{B} + \mathbf{C}$ with \mathbf{B} parallel to the plane P and \mathbf{C} perpendicular to the plane P.

Solution. Let $\mathbf{q} = \mathbf{v} \times \mathbf{w}$. By the previous question, we already know that $\mathbf{q} = \langle -4, -2, 2 \rangle$. Furthermore, by definition of cross product, we know \mathbf{q} is perpendicular to both \mathbf{v} and \mathbf{w} , and hence also to the plane P.

Since C is perpendicular to the plane P, C should be parallel to \mathbf{q} . Similarly, since B is parallel to the plane P, B should be perpendicular to \mathbf{q} .

So, now the original question converts to the following problem: knowing \mathbf{A} and \mathbf{q} , find two vectors \mathbf{B} and \mathbf{C} with \mathbf{B} perpendicular to \mathbf{q} and \mathbf{C} parallel to \mathbf{q} .

Hence, **C** is nothing but the projection of **A** onto **q**:

$$\mathbf{C} = \left(\frac{\mathbf{A} \cdot \mathbf{q}}{||\mathbf{q}||}\right) \frac{\mathbf{q}}{||\mathbf{q}||} = \langle \frac{1}{3}, \frac{1}{6}, -\frac{1}{6} \rangle.$$

Now, since $\mathbf{A} = \mathbf{B} + \mathbf{C}$, we have

$$\mathbf{B} = \mathbf{A} - \mathbf{C} = \langle \frac{2}{3}, \frac{11}{6}, \frac{19}{6} \rangle.$$