Quick Review

- Project a vector \mathbf{v} onto another vector \mathbf{w}

$$
\left(\mathbf{v} \cdot \frac{\mathbf{w}}{\|\mathbf{w}\|}\right) \frac{\mathbf{w}}{\|\mathbf{w}\|}
$$

- Determinant of a 3-by-3 matrix
- Cross product $\mathbf{v} \times \mathbf{w}$ (works in 3D, the product is another 3D-vector)

1. Geometrically: $\|\mathbf{v} \times \mathbf{w}\|$ is the area of the parallelogram spanned by \mathbf{v} and \mathbf{w}; $\mathbf{v} \times \mathbf{w}$ is orthogonal to both \mathbf{v} and \mathbf{w} and the direction is determined by right-hand rule.
2. Algebraically,

$$
\left\langle x_{1}, y_{1}, z_{1}\right\rangle \times\left\langle x_{2}, y_{2}, z_{2}\right\rangle=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
x_{1} & y_{1} & z_{1} \\
x_{2} & y_{2} & z_{2}
\end{array}\right|
$$

Practice problems:

1. Project the vector $\langle 1,2,3\rangle$ onto $\langle 1,0,1\rangle$.
2. Compute the following determinant

$$
\left|\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right| .
$$

3. Compute the cross product

$$
\langle 2,-1,3\rangle \times\langle-4,3,-5\rangle .
$$

Solution.

$$
\begin{aligned}
\langle 2,-1,3\rangle \times\langle-4,3,-5\rangle & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
2 & -1 & 3 \\
-4 & 3 & -5
\end{array}\right| \\
& =\left|\begin{array}{cc}
-1 & 3 \\
3 & -5
\end{array}\right| \mathbf{i}-\left|\begin{array}{cc}
2 & 3 \\
-4 & -5
\end{array}\right| \mathbf{j}+\left|\begin{array}{cc}
2 & -1 \\
-4 & 3
\end{array}\right| \mathbf{k} \\
& =-4 \mathbf{i}-2 \mathbf{j}+2 \mathbf{k} .
\end{aligned}
$$

4. (Optional) Let $\mathbf{v}=\langle 2,-1,3\rangle$ and $\mathbf{w}=\langle-4,3,-5\rangle$. The two lines generated by \mathbf{v} and w will determine a plane P.
Suppose $\mathbf{A}=\langle 1,2,3\rangle$. Find two vectors \mathbf{B} and \mathbf{C} such that $\mathbf{A}=\mathbf{B}+\mathbf{C}$ with \mathbf{B} parallel to the plane P and \mathbf{C} perpendicular to the plane P.

Solution. Let $\mathbf{q}=\mathbf{v} \times \mathbf{w}$. By the previous question, we already know that $\mathbf{q}=$ $\langle-4,-2,2\rangle$. Furthermore, by definition of cross product, we know \mathbf{q} is perpendicular to both \mathbf{v} and \mathbf{w}, and hence also to the plane P.
Since \mathbf{C} is perpendicular to the plane P, \mathbf{C} should be parallel to \mathbf{q}. Similarly, since \mathbf{B} is parallel to the plane P, \mathbf{B} should be perpendicular to \mathbf{q}.
So, now the original question converts to the following problem: knowing \mathbf{A} and \mathbf{q}, find two vectors \mathbf{B} and \mathbf{C} with \mathbf{B} perpendicular to \mathbf{q} and \mathbf{C} parallel to \mathbf{q}.
Hence, \mathbf{C} is nothing but the projection of \mathbf{A} onto \mathbf{q} :

$$
\mathbf{C}=\left(\frac{\mathbf{A} \cdot \mathbf{q}}{\|\mathbf{q}\|}\right) \frac{\mathbf{q}}{\|\mathbf{q}\|}=\left\langle\frac{1}{3}, \frac{1}{6},-\frac{1}{6}\right\rangle .
$$

Now, since $\mathbf{A}=\mathbf{B}+\mathbf{C}$, we have

$$
\mathbf{B}=\mathbf{A}-\mathbf{C}=\left\langle\frac{2}{3}, \frac{11}{6}, \frac{19}{6}\right\rangle
$$

