Quick Review

- Vectors: direction + magnitude
- Operations:

1. Vector addition

Geometrically, diagonal of the parallelogram formed by the two vectors.
Algebraically, addition by component $\left\langle x_{1}, y_{1}, z_{1}\right\rangle+\left\langle x_{2}, y_{2}, z_{2}\right\rangle=\left\langle x_{1}+x_{2}, y_{1}+\right.$ $\left.y_{2}, z_{1}+z_{2}\right\rangle$.
2. Scalar multiplication

Geometrically, elongate/shorten a vector.
Analytically, scalar multiplication by component $\lambda \cdot\langle x, y, z\rangle=\langle\lambda x, \lambda y, \lambda z\rangle$.

- Length of a vector $\|\langle x, y, z\rangle\|=\sqrt{x^{2}+y^{2}+z^{2}}$.
- Dot product

Geometrically, $\mathbf{v} \cdot \mathbf{w}=\|\mathbf{v}\|\|\mathbf{w}\| \cos \theta$, where θ is the angle formed by \mathbf{v} and \mathbf{w}.
Algebraically,

$$
\left\langle x_{1}, y_{1}, z_{1}\right\rangle \cdot\left\langle x_{2}, y_{2}, z_{2}\right\rangle=x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}
$$

- Dot product and length $\|\mathbf{v}\|=\sqrt{\mathbf{v} \cdot \mathbf{v}}$.

Practice problems:

1. Find the point on the y-axis that is equidistance from $\langle 2,5,-3\rangle$ and $\langle-3,6,1\rangle$. (equidistance means same distance)
2. If $P_{1}=\left(x_{1}, y_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}\right)$, use vectors to find the coordinates of the mid point of P_{1} and P_{2}.
What about the same question for two points $P_{1}=\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}, z_{2}\right)$ in 3D?
3. Use vectors to show that the two diagonals of a parallelogram disect each other.
