Quick Review

• Given a function z = f(x, y). The tangent plane to its graph at (x_0, y_0, z_0) where $z_0 = f(x_0, y_0)$ is given by

$$z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0).$$

• Linear approximation. Let $\Delta x = x - x_0$, $\Delta y = y - y_0$, $\Delta z = z - z_0$. Then

$$\Delta z \approx f_x(x_0, y_0) \Delta x + f_y(x_0, y_0) \Delta y$$

Practice problems:

1. Consider $f(x,y) = \frac{y^2}{x}$. Find the tangent plane to the its graph at the point (1,2).

2. To determine the volume of a cylinder of radius around 2 and height around 3, about how accurately should the radius and height be measured for the error in the calculated volume not to exceed 0.1?

- 3. Consider $z = x^2(y+1)$.
 - (a) Around the point (1,0), is z more sensitive to changes in x or in y?

(b) Around the point (1,0), what should the ratio of Δy to Δx be in order that small changes with this ratio produce no change in z, i.e., no first-order change—of course z will change a little, but like $(\Delta x)^2$, not like Δx .