Quick Review

- Given a function $z=f(x, y)$. The tangent plane to its graph at $\left(x_{0}, y_{0}, z_{0}\right)$ where $z_{0}=f\left(x_{0}, y_{0}\right)$ is given by

$$
z-z_{0}=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

- Linear approximation. Let $\Delta x=x-x_{0}, \Delta y=y-y_{0}, \Delta z=z-z_{0}$. Then

$$
\Delta z \approx f_{x}\left(x_{0}, y_{0}\right) \Delta x+f_{y}\left(x_{0}, y_{0}\right) \Delta y
$$

Practice problems:

1. Consider $f(x, y)=\frac{y^{2}}{x}$. Find the tangent plane to the its graph at the point $(1,2)$.
2. To determine the volume of a cylinder of radius around 2 and height around 3 , about how accurately should the radius and height be measured for the error in the calculated volume not to exceed 0.1?
3. Consider $z=x^{2}(y+1)$.
(a) Around the point $(1,0)$, is z more sensitive to changes in x or in y ?
(b) Around the point $(1,0)$, what should the ratio of Δy to Δx be in order that small changes with this ratio produce no change in z, i.e., no first-order change of course z will change a little, but like $(\Delta x)^{2}$, not like Δx.
