Quick Review

- Surface area. Let $z=f(x, y)$ represent a graph. Let R be a region in the $x-y$ plane. The surface area of the graph $z=f(x, y)$ over the region R is given by

$$
\iint_{R} \sqrt{1+\left(f_{x}\right)^{2}+\left(f_{y}\right)^{2}} d A
$$

- Suppose $u=u(x, y)$ and $v=v(x, y)$.

$$
\begin{aligned}
& \frac{\partial(u, v)}{\partial(x, y)}=\left|\operatorname{det}\binom{u_{x}, u_{y}}{v_{x}, v_{y}}\right|, \\
& \frac{\partial(x, y)}{\partial(u, v)}=\left|\operatorname{det}\binom{x_{u}, x_{v}}{y_{u}, y_{v}}\right| .
\end{aligned}
$$

The above two quantities are reciprocal to each other; that is:

$$
\frac{\partial(u, v)}{\partial(x, y)} \cdot \frac{\partial(x, y)}{\partial(u, v)}=1
$$

You can use this relation to find both quantities by only finding the easier of the two.

- Change of variable. Suppose initially you have a double integral

$$
\iint_{R} f(x, y) d x d y
$$

The change of variable is

$$
\begin{equation*}
u=u(x, y), v=v(x, y) \tag{1}
\end{equation*}
$$

and you need to rewrite the double integral in u, v coordinates.

1. Figure out the region R^{\prime} in the $u-v$ plane corresponding to R in the $x-y$ plane.
2. Compute $\frac{\partial(x, y)}{\partial(u, v)}$. (If it's hard to solve x, y in terms of u, v according to (1), try computing $\frac{\partial(u, v)}{\partial(x, y)}$ and then take the reciprocal.)
3. The integral now becomes

$$
\iint_{R^{\prime}} f(x, y) \frac{\partial(x, y)}{\partial(u, v)} d u d v
$$

4. Convert any remaining x, y in the integral to u, v based on (1). Now you should have a double integral completely in u, v. (You should not see any x, y in your integral!!)
5. Carry out the double integral in u, v like we practiced before.

Practice problems:

1. Evaluate

$$
\iint_{R}\left(\frac{x-y}{x+y+2}\right)^{2} d x d y
$$

, where R is the parallelogram with $(1,0),(-1,0),(0,1)$ and $(0,-1)$ as its four vertices. Use the change of variable

$$
u=x+y, v=x-y
$$

2. Evaluate

$$
\iint_{R}(2 x-3 y)^{2}(x+y)^{2} d x d y
$$

where R is the triangle bounded by the positive x-axis, the negative y-axis, and the line $2 x-3 y=4$, by making the change of variable $u=x+y, v=2 x-3 y$.
3. Find the surface area of the plane $z=a x+b y$ over an arbitrary region R with area $(\mathrm{R})=$ c.
4. Find the surface area of the parabloid $z=1-a x^{2}-a y^{2}$ where $0<a<1$ over the unit disk $x^{2}+y^{2} \leq 1$.

