Quick Review

- Second derivative test. Suppose $\left(x_{0}, y_{0}\right)$ is a critical point for $z=f(x, y)$. Compute

$$
A=f_{x x}\left(x_{0}, y_{0}\right), \quad \Delta=f_{x x}\left(x_{0}, y_{0}\right) f_{y y}\left(x_{0}, y_{0}\right)-f_{x y}\left(x_{0}, y_{0}\right)^{2}
$$

- $A>0, \Delta>0:\left(x_{0}, y_{0}\right)$ is a local min.
$-A<0, \Delta>0:\left(x_{0}, y_{0}\right)$ is a local max.
$-\Delta<0:\left(x_{0}, y_{0}\right)$ is a saddle point.
$-\Delta=0$: inconclusive.
- Lagrange multiplier (for constrained optimization problem).

Maximize/minimize $z=f(x, y)$ subject to the constraint $g(x, y)=c$, where c is a given constant.

Introduce the additional variable λ (Lagrange multiplier) and solve

$$
\begin{cases}g(x, y) & =0 \\ f_{x}(x, y) & =\lambda g_{x}(x, y) \\ f_{y}(x, y) & =\lambda g_{y}(x, y)\end{cases}
$$

Compare the value of f at solutions to the above equations.
This also extends to functions of three variables and you will have one more equation involving the partial derivative of the third variable.

- Optimization problem over a bounded region R.
- Step 1: find interior critical points.
- Step 2: use Lagrange multiplier to study the function over the boundary of R.
- Step 3: compare the values of f over the points you found in Steps 1 and 2.

Practice problems:

1. Let $f(x, y)=x^{4}+y^{4}-4 x y+1$. Find the critical point(s) for f and determine if they are local min/max or saddle point(s).
2. What is the maximum and minimum value of $5 x-3 y$ on the constraint set $x^{2}+y^{2}=$ $136 ?$
3. What is the min and max value of $81 x^{2}+y^{2}$ on the set $4 x^{2}+y^{2} \leq 9$?
