$$
\text { 18.02A Recitation - Wednesday, Dec. 5, } 2018
$$

Quick Review

- To use polar coordinates to compute a double integral

$$
\iint_{R} f(x, y) d x d y
$$

1. Rewrite the integrand into $f(r \cos \theta, r \sin \theta)$.
2. $d x d y$ becomes $r d r d \theta$.
3. Rewrite the region $R$ using polar coordinates. Usually, use radial stripes:
(a) Figure out the largest and the smallest $\theta$ for all points in $R$-your answer should be $a \leq \theta \leq b$.
(b) Now fix an arbitrary $\theta$, draw the radial slice intersecting the region $R$, and ask yourself: on this particular slice, what is the smallest $r$ and what is the largest $r$ ?-your answer should be $g(\theta) \leq r \leq h(\theta)$.
4. Now, put everything together:

$$
\int_{a}^{b}\left(\int_{g(\theta)}^{h(\theta)} f(r \cos \theta, r \sin \theta) r d r\right) d \theta
$$

- Polar coordinates is useful especially when either your region is "round" or when your integrand has something like $x^{2}+y^{2}$.

Practice problems:

1. Consider the circle $C$ of radius 1 centered at $(0,1)$ :

$$
x^{2}+(y-1)^{2}=1
$$

(a) Use polar coordinates $r$ and $\theta$ to represent $C$.
(b) Denote by $R$ the region enclosed by the circle - so, $R$ is the disk of radius 1 centered at $(0,1)$. The area of $R$ is given by

$$
\iint_{R} 1 d A .
$$

Use polar coordinates to compute this double integral. (Your answer should be $\pi$, which is precisely the area of a unit disk.)
2. Consider two circles of radius 1 , one centered at $(0,0)$ and the other centered at $(1,0)$. Let $R$ be the region inside both circles. The area of $R$ can be given by

$$
\iint_{R} 1 d A .
$$

Use polar coordinates to compute this double integral.

