18.02A Recitation - Monday, Dec. 3, 2018

Quick Review

- Double integral

$$
\iint_{R} f(x, y) d A
$$

- Geometrically, if $f(x, y) \geq 0$, this is the volume of the solid under the graph $z=f(x, y)$ over the region R.
- Algebraically, this is defined by Riemann sum (similar to that in 18.01A).
- Compute a double integral by converting it to an iterated integral.

1. Draw the region R first! (Very important! Do it!)
2. Slice the region R either vertically or horizontally.
3. If slicing vertically: a) figure out the smallest and the largest x in R-your answer should be $a<x<b$; b) now focus on a specific (but generic) x and ask yourself what the range of y-your answer should be $g(x)<y<h(x)$.
If slicing horizontally: a) figure out the smallest and the largest y in R-your answer should be $a<y<b$; b) now focus on a specific (but generic) y and ask yourself what the range of x-your answer should be $g(y)<x<h(y)$.
4. Do the iterated integral-inner integral first, then outer integral. Remember, at the end of the day, you get a number!

- Applications:
- Area of R :

$$
\iint_{R} 1 d A
$$

- Volume between $z=f(x, y)$ and $z=g(x, y)$ (with $f(x, y) \geq g(x, y))$ over R :

$$
\iint_{R}(f(x, y)-g(x, y)) d A
$$

- Average value of f over R :

$$
\frac{1}{\operatorname{Area}(R)} \iint_{R} f(x, y) d A
$$

- Total mass of a metal plate with density distribution $\rho(x, y)$:

$$
\iint_{R} \rho(x, y) d A
$$

- Center of mass of a metal plate with density distribution $\rho(x, y)$:

$$
\begin{aligned}
& x_{0}=\frac{1}{\operatorname{mass}} \iint_{R} x \rho(x, y) d A \\
& y_{0}=\frac{1}{\operatorname{mass}} \iint_{R} y \rho(x, y) d A
\end{aligned}
$$

Practice problems:

1. Evaluate the following double integral

$$
\iint_{R} y d A
$$

where R is the triangle with vertices at $(\pm 1,0),(0,1)$.
2. Evaluate the double integral

$$
\iint 2 x+4 y d A
$$

where R is the region bounded by $y=\sqrt{x}$ and $y=x^{2}$.
3. Evaluate each of the following iterated integrals by changing the orders of integration. (Start by sketching R.)
a)

$$
\int_{0}^{\frac{1}{4}} \int_{\sqrt{t}}^{\frac{1}{2}} \frac{e^{u}}{u} d u d t
$$

b)

$$
\int_{0}^{1} \int_{x^{1 / 3}}^{1} \frac{1}{1+u^{4}} d u d x
$$

4. Find the volumes above the $x y$-plane bounded by the cylinder $x^{2}+y^{2}=1$ and the plane $x+y+z=2$.
