Quick Review:

- Second fundamental theorem: given a continuous f, define $A(x)=\int_{a}^{x} f(t) d t$. Then $A(x)$ is differentiable and $A^{\prime}(x)=f(x)$.
- Area bounded by $y=f(x)$ and $y=g(x)$ between $x=a$ and $x=b$ (assuming $f(x) \geq g(x))$ is given by $\int_{a}^{b} f(x)-g(x) d x$.
- Volume of revolution: disk and shell method
- Arclength. $d s=\sqrt{1+\left(f^{\prime}\right)^{2}} d x$

Practice problems:

1. Use Second Fundamental Theorem of Calculus to evaluate the following derivatives.
(a)

$$
\frac{d}{d x} \int_{1}^{x^{2}} \frac{d t}{\sqrt{t+\sqrt{t+1}}}
$$

(b)

$$
\frac{d}{d x} \int_{x}^{x^{2}} \frac{d t}{1+t^{4}}
$$

2. Find the area of the region bounded by the following curves:

$$
x=y^{2}, y=x+3, y=-2, y=1 .
$$

3. Find the volume of the solid of revolution generated when the area bounded by

$$
y=2 x-x^{2}, y=0
$$

(a) is revolved about the x-axis;
(b) is revolved about the y-axis.

