Quick Review:

- Definite integral $\int_{a}^{b} f(x) d x$
- Geometric meaning: "signed" area under the curve $y=f(x)$ between $x=a$ and $x=b$.
- Algebraically: limit of the Riemann sum as the partition gets finer.

1. partition $[a, b]$ into n equal intervals with length $\Delta x=\frac{b-a}{n}$
2. pick a point inside each interval, $c_{i} \in\left[x_{i}, x_{i+1}\right]$
3. pretend that inside each interval, the function is constantly $f\left(c_{i}\right)$, which leads to

$$
\sum_{i=0}^{n-1} f\left(c_{i+1}\right) \Delta x
$$

4. take limit as $n \rightarrow \infty$

- types of Riemann sum: left sum, right sum, upper sum, lower sum, ...
- Properties of definite integral:

1. $\int_{a}^{b} c_{1} f(x)+c_{2} g(x) d x=c_{1} \int_{a}^{b} f(x) d x+c_{2} \int_{a}^{b} g(x) d x$
2. $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$
3. $\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x$

- Fundamental Theorem of Calculus: if $F^{\prime}(x)=f(x)$, then

$$
\int_{a}^{b} f(x) d x=\left.F(x)\right|_{a} ^{b}=F(b)-F(a)
$$

Practice problems:

1. Find $\int_{0}^{1} e^{x} d x$ by using Riemann sum.
2. Find the limit by relating it to Riemann sum:

$$
\lim _{n \rightarrow \infty} \frac{\cos (1 / n)+\cos (2 / n)+\cdots+\cos ((n-1) / n)+\cos (1)}{n}
$$

3. In class, we saw that for continuous functions, the limit of the Riemann sum does not depend on the choice of c_{i} inside each interval. For non-continuous functions, the story can sometimes be different. Consider the function $h(x)$ defined on $[0,1]$:

$$
h(x)= \begin{cases}1 & \text { if } x \text { is rational } \\ 0 & \text { if } x \text { is irrational }\end{cases}
$$

Show that one cannot define $\int_{0}^{1} h(x) d x$ by showing that the limit of the upper sum and the limit of the lower sum are different.

