$$
\text { 18.01A Recitation - Monday, Oct. 15, } 2018
$$

Quick Review on Power Series

- It looks like

$$
\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots
$$

- Finding the interval where it converges: ratio test implies

$$
\text { Radius of Convergence } R=\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|
$$

- For $x= \pm R$, plug $x= \pm R$ into power series and test them using the convergence test you learnt before. (You will have one series with all positive terms, the other with alternating terms.)
- Taylor's formula: direct computation, substitution, differentiate known Taylor's formula, integrating known Taylor's formula
- Use Taylor's formula to solve ODE. (This sounds fancy, but is extremely easy/simpleminded.)

Practice problems:

1. Consider the power series:

$$
\sum \frac{x^{n}}{\ln (1+n)}
$$

(a) Find its radius of convergence R.
(b) Find the interval on which the power series is convergent.
2. Find the Taylor's formula for

$$
F(x)=\int_{0}^{x^{2}} \cos t d t
$$

near $x=0$ by using the Taylor's formula

$$
\cos t=\sum_{n=0}^{\infty}(-1)^{n} \frac{t^{2 n}}{(2 n)!}
$$

3. Suppose we have a function $f(x)$ which satisfies $f(0)=0$ and satisfies the differential equation $f^{\prime}(x)=x-f(x)$. Write down a formula that relates the n-th Taylor coefficient a_{n} of $f(x)$ in terms of the coefficients a_{m} with $m<n$. Use this to calculate the first 5 terms of the Taylor series expansion for $f(x)$ near $x=0$.
