Left from last time:

$$
\int \frac{3 x^{2}-x+4}{x^{3}+2 x^{2}+2 x} d x
$$

Quick Review on improper integral:

- Why are they "improper"?

Possibility 1: limits of the integral contain $\infty$. e.g., $\int_{0}^{\infty} 1 / x d x$
Possibility 2: the integrand goes to $\pm \infty$ inside the domain of the integral. e.g., $\int_{0}^{1} 1 / x d x$.
The two possibilities can occur in one single integral. e.g., $\int_{0}^{\infty} 1 / x d x$. When this happens, you need to separate the "problems", e.g., $\int_{0}^{\infty} 1 / x d x=\int_{0}^{1} 1 / x d x+\int_{1}^{\infty} 1 / x d x$ and study the two improper integrals separately. The original improper integral converges ONLY when both of the two separated improper integrals are convergent.

- Two major methods to test for convergence: direct comparison and asymptotic convergence. To use either of them, you need to find a suitable function that is comparable to the original integrand around the "problematic" point (the point that makes the integral improper).
- Important improper integrals (the ones that are usually compared against):
- Direct comparison and asymptotic convergence only work when the integrand is always positive/negative, i.e., it cannot change sign.

Practice problems:
Determine whether the following improper integral converges.
1.

$$
\int_{1}^{\infty} e^{-\sqrt{x}} d x
$$

2. 

$$
\int_{0}^{\infty} \frac{\sqrt{x^{3}+3 x+2}}{\sqrt[3]{x^{8}+1}} d x
$$

3. 

$$
\int_{0}^{1} \frac{d x}{x^{2}+\sqrt{x}}
$$

